
StreamBox-HBM
Stream	Analytics	on	High	Bandwidth	Hybrid	Memory

Hongyu	Miao, Purdue	ECE; Myeongjae	Jeon,	UNIST;	Gennady	Pekhimenko, UToronto;
Kathryn	S.	McKinley, Google; Felix	Xiaozhu	Lin, Purdue	ECE

http://xsel.rocks/p/streambox

Timely	processing	of	streaming	data

2High	Throughput	&	Low	Latency!

On	100+	GB	memory

Hybrid	Memory:	3D	Memory	+	DRAM
DRAM
• Larger	capacity,	but lower	bandwidth

3
Cores

3D Memory DRAM

80	GB/s

100+	GB
16	GB

375	GB/s

3D	Memory	
• Higher	bandwidth,	but smaller	capacity
• NO latency	benefit	(Unlike	cache:	SRAM+DRAM)
• Same as	DRAM	without	high	parallelism	or	sequential	access
• As	cache	of	DRAM?		à Poor	performance…

Can	hybrid	mem	speed	up	stream	analytics?
Yes!			StreamBox-HBM

• The	first stream	engine	optimized	for	3D	memory	+	DRAM	on	real	hardware
• Achieves	the	best reported	throughput	on	single	node	(win-avg:110MRec/s)
• Speeds	up	stream	analytics	by	7x	

4

0
5

10
15
20
25
30
35

0 10 20 30 40 50 60
#	cores

Th
ro
ug
hp

ut
	M

re
c/
s 3D	+	DRAM

in-mem-index			

3D	as	cache
full-records

7x	speedup

TopK	Per	Key

Challenges

1. Hash	Grouping	performs	poorly	on	3D	memory

2. 3D	memory	is	capacity	limited

3. How	to	dynamically	map	streaming	data	to	hybrid	mem?

5

Challenge	1:	Hash	Grouping	performs	poorly	on	3D	memory

• Operators:	computations	consume/produce	streams
• Pipeline:	a	graph	of	streaming	operators

6

• Data	Grouping
• A	set	of	very	common	and	expensive	operators that	reorganize	records
• Hash with	random	access	in	existing	engines	à Performs	poorly	on	3D	memory…

Ingestion Groupby
key

Average	per	
keyWindow Top	Key

10:00-10:05

130
500
302
100
150

500
302Time	10:01

ID:	0x1024
Value:	200

Grouping

Challenge	2:	3D	memory	is	capacity	limited

• Streaming	data	

• High	data	volume	(100+	GB)

• 3D	Memory

• Capacity	limited	(~	16	GB)

• 3D	memory	is	NOT	large	enough	to	hold	all	streaming	data….
7

Cores

3D Memory

16	GB

Cannot	fit!

Challenge	3:	managing	two	types	of	memory	
• How	to	dynamicallymap	data/operators	to	two	types	of	memory?	

8

What	to	map? Where	to	map?

Unbounded	data

Various	queries	

Hybrid	memory:
benefit	&	limitation

Ingestion Groupby
key

Average	per	
keyWindow Top	Key

10:00-10:05

130
500
302
100
150

500
302

StreamBox-HBM	Solutions

1.	Hash	grouping	performs	poorly	on	3D	memory	

• à Solution	1:	Use	high	parallel	Sort	for	grouping

2.	3D	memory	is	capacity	limited	

• à Solution	2:	Only	use	3D	memory	to	store	in-memory	indexes

3.	How	to	manage	two	types	of	memory?

• à Solution	3:	Balance	two	limited	resource	with	a	single	knob

9

Solution	1:	Parallel	Sort	for	Grouping

Known	duals	of	Grouping:	Hash	vs.	Sort
• DRAM:		Hash	is	the	best	[VLDB’09,	VLDB’13,	SIGMOD’15]
• Contribution:	3D	memory	reverses the	debate.	Sort outperforms	Hash.

Sort	is	worse than	Hash	on	algorithmic	complexity
• O(NlogN)	vs.	O(N)	

Yet,	Sort	outperforms Hash	after	we	exploit	all:
• Abundant	memory	bandwidth	
• High	task	parallelism
• Wide	SIMD	(avx512)

10
[VLDB’09]	Sort	vs.	hash	revisited:	Fast	join	implementation	on	modern	multi-core	cpus.		[VLDB’13]	Multi-core,	main-memory	joins:	Sort	vs.	hash	revisited
[SIGMOD’15]	Rethinking	simd vectorization	for	in-memory	databases

11

0
20
40
60
80

100
120
140
160
180

0 20 40 60

m
ill
io
n	
pa
irs
	/	
se
c	

#	cores

0

50

100

150

200

250

300

0 20 40 60

GB
	/	
se
c	

#	cores

Solution	1:	Parallel	Sort	for	Grouping

Throughput Mem	bandwidth

Sort	outperforms	Hash	on	3D	memory

12

0
20
40
60
80

100
120
140
160
180

0 20 40 60

m
ill
io
n	
pa
irs
	/	
se
c	

#	cores

0

50

100

150

200

250

300

0 20 40 60

GB
	/	
se
c	

#	cores

Hash	DRAM

Solution	1:	Parallel	Sort	for	Grouping

Hash	DRAM

Throughput Mem	bandwidth

Sort	outperforms	Hash	on	3D	memory

13

0
20
40
60
80

100
120
140
160
180

0 20 40 60

m
ill
io
n	
pa
irs
	/	
se
c	

#	cores

0

50

100

150

200

250

300

0 20 40 60

GB
	/	
se
c	

#	cores

Hash	3D	mem

Hash	DRAM

Solution	1:	Parallel	Sort	for	Grouping

Hash	DRAM

Hash	3D	mem

Throughput Mem	bandwidth

Sort	outperforms	Hash	on	3D	memory

14

0
20
40
60
80

100
120
140
160
180

0 20 40 60

m
ill
io
n	
pa
irs
	/	
se
c	

#	cores

0

50

100

150

200

250

300

0 20 40 60

GB
	/	
se
c	

#	cores

Hash	3D	mem

Hash	DRAM

Sort	DRAMSort	DRAM

Hash	DRAM

Hash	3D	mem

Solution	1:	Parallel	Sort	for	Grouping

Throughput Mem	bandwidth

Sort	outperforms	Hash	on	3D	memory

15

0
20
40
60
80

100
120
140
160
180

0 20 40 60

m
ill
io
n	
pa
irs
	/	
se
c	

#	cores

0

50

100

150

200

250

300

0 20 40 60

GB
	/	
se
c	

#	cores

Throughput Mem	bandwidth

Hash	3D	mem

Hash	DRAM Hash	3D	mem

Hash	DRAM

Sort	DRAM

Sort	3D	mem	 Sort	3D	mem

Sort	DRAM

Solution	1:	Parallel	Sort	for	Grouping

Sort	outperforms	Hash	on	3D	memory

Solution	2:	Only	use	3D	memory	for	in-memory	index	

16

Streaming
data

Full	Records	<key,	key1,v1,	v2,	v3…>Index	<key,	pointer>

Cores

3D Memory DRAM

80	GB/s

96	GB
16	GB

375	GB/s

Minimize	the	use	of	precious	3D	mem’s	capacity	while	exploit	high	bandwidth

Smaller
Faster

More	efficient
K	Swapping

Solution	3:	balance	two	limited	resources

17

3D Memory

DRAM	
Bandwidth

3D
	m

em
or
y	

Ca
pa
ci
ty

DRAM

Cores 80	GB/s

16	GB

Solution	3:	balance	two	limited	resources

18

Cores

High	pressure	on	3D	Memory	capacity

DRAM

DRAM	
Bandwidth

3D
	m

em
or
y	

Ca
pa
ci
ty

3D Memory

80	GB/s

16	GB

Solution	3:	balance	two	limited	resources

19

Cores

High	pressure	on	3D	Memory	capacityà indexes	on	DRAM

DRAM

DRAM	
Bandwidth

3D
-s
ta
ck
ed

	
Ca
pa
ci
ty

3D Memory

80	GB/s

16	GB

Solution	3:	balance	two	limited	resources

20

3D Memory

DRAM	
Bandwidth

3D
-s
ta
ck
ed

	
Ca
pa
ci
ty

DRAM

Cores

Pressure	rebalanced

80	GB/s

16	GB

Solution	3:	balance	two	limited	resources

21

3D Memory DRAM

Cores

High	pressure	on	DRAM	bandwidth

DRAM	
Bandwidth

3D
-s
ta
ck
ed

	
Ca
pa
ci
ty

80	GB/s

16	GB

Solution	3:	balance	two	limited	resources

22

3D Memory DRAM

Cores

High	pressure	on	DRAM	bandwidthàmore	indexes	on	3D	memory

DRAM	
Bandwidth

3D
-s
ta
ck
ed

	
Ca
pa
ci
ty

80	GB/s

16	GB

Solution	3:	balance	two	limited	resources

23

3D Memory

DRAM	
Bandwidth

3D
-s
ta
ck
ed

	
Ca
pa
ci
ty

DRAM

Cores

Pressure	rebalanced

80	GB/s

16	GB

Solution	3:	balance	two	limited	resources

24

3D Memory DRAM

High	pressure	on	both…	à reach	hardware	limit	à limit	data	ingestion

DRAM	
Bandwidth

3D
-s
ta
ck
ed

	
Ca
pa
ci
ty

Cores

Back
pressure

80	GB/s

16	GB

Other	optimizations

• Customized	memory	allocator
• Customized	task	scheduler	for	high	pipeline	and	data	parallelism
• High	parallel	merge-sort	kernels	using	avx-512	
• Dynamically	handle	key	changes
• Parallel	aggregation
• Co-design	RDMA	ingestion	with	memory	management	and	task	scheduling
• Task	parallelism	to	utilize	all	CPU	cores
• …

25

StreamBox-HBM	Implementation
• Based	on	our	prior	work	StreamBox [USENIX	ATC’17]
• Implement	on	real	hardware	(Intel	KNL)	with	RDMA	network
• 61K	lines	of	C++11,	of	which	38K	lines	are	new
• Open	source:	http://xsel.rocks/p/streambox

26[USENIX	ATC’17]	StreamBox:	Modern	Stream	Processing	on	a	Multicore	Machine,	Hongyu	Miao,	Heejin Park,	Myeongjae	Jeon,	
Gennady	Pekhimenko,	Kathryn	S.	McKinley,	and	Felix	Xiaozhu Lin,	in	Proc.	USENIX	Annual	Technical	Conference,	2017.

Ninja	Developer	Platform	(KNL) Mellanox ConnectX-2

16GB	3D	memory
96GB	DRAM
64	cores	@1.3GHz

40Gb/s

Evaluation

• Comparing	to	widely	used	stream	analytics	engine
• Validating	our	key	system	designs

27

StreamBox-HBM	is	10x	faster	than	Flink

28

0

10

20

30

40

50

60

2 10 18 26 34 42 50 58

Th
ro
ug
hp

ut
	M

Re
c/
s

#	Cores

Flink	@	x56

Flink	@	KNL

Ours	@	KNL
RDMA	ingestion	limit

KNL:	Intel	Xeon	Phi	Knights	Landing	w/	HBM.	64	cores@1.3GHz.	$5,000
x56:	Intel	Xeon	E7-4830v4.	4x14	cores	@2.0GHz.	256GB.	$23,000

Benchmark:	Yahoo	Stream	Benchmark.	
Output	delay:	1	second

5-10x

Poor performance	without any	key	designs

29

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

#	cores

Th
ro
ug
hp

ut
	M

re
c/
s

3D	as	cache
full-records

TopK	Per	Key

In-mem-index performs	better	than	full-record

30

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

#	cores

Th
ro
ug
hp

ut
	M

re
c/
s 3D	as	cache

in-mem-index			

3D	as	cache
full-records

Using	
in-mem	index

TopK	Per	Key

3D	memory	boosts	performance

31

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

#	cores

Th
ro
ug
hp

ut
	M

re
c/
s 3D	as	cache

in-mem-index			

DRAM	only
in-mem-index			

3D	as	cache
full-records

Using	
3D	memory

TopK	Per	Key

SW better	manages	hybrid	memory	than	HW

32

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

#	cores

Th
ro
ug
hp

ut
	M

re
c/
s

3D	+	DRAM
in-mem-index			

3D	as	cache
in-mem-index			

DRAM	only
in-mem-index			

3D	as	cache
full-records

SW	manages
hybrid	memory

TopK	Per	Key

Performance	improve	with	all	system	designs

33

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

#	cores

Th
ro
ug
hp

ut
	M

re
c/
s

3D	+	DRAM
in-mem-index			

3D	as	cache
in-mem-index			

DRAM	only
in-mem-index			

3D	as	cache
full-records

Using	all	key
system	designs

TopK	Per	Key

The	first stream	engine	optimized	for	3D	Memory	+	DRAM on	real	hardware

34

Balance	limited	resourcesMinimize	use	of	capacity

Hash	à Sort

Abundant	memory

High	parallelism

Wide	SIMD	(avx512)

Sequential	access

1.	Grouping	with	Sort 2.	In-memory	index	in	3D	Memory 3.	Mng hybrid	mem

DRAM	Bandwidth

3D
	m

em
or
y

Ca
pa
ci
ty

http://xsel.rocks/p/streambox

Exploit	high	bandwidth

StreamBox-HBM

35

Lessons	on	exploiting	3D	memory	+	DRAM

Cheap	VM
(huge	page)

Apps

OS	kernel
RDMA	network

bypass	kernel,	free	CPU

High	task	
parallelism

Custom	mem	
allocator

Sequential	mem
access

Runtime Thread	pool	
+	custom	task	scheduler

Wide	SIMD	
(avx512)

Hybrid
Memory

Packed	data	
structure

