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Timely	processing	of	streaming	data

2High	Throughput	&	Low	Latency!

On	100+	GB	memory



Hybrid	Memory:	3D	Memory	+	DRAM
DRAM
• Larger	capacity,	but lower	bandwidth

3
Cores

3D Memory DRAM

80	GB/s

100+	GB
16	GB

375	GB/s

3D	Memory	
• Higher	bandwidth,	but smaller	capacity
• NO latency	benefit	(Unlike	cache:	SRAM+DRAM)
• Same as	DRAM	without	high	parallelism	or	sequential	access
• As	cache	of	DRAM?		à Poor	performance…



Can	hybrid	mem	speed	up	stream	analytics?
Yes!			StreamBox-HBM

• The	first stream	engine	optimized	for	3D	memory	+	DRAM	on	real	hardware
• Achieves	the	best reported	throughput	on	single	node	(win-avg:110MRec/s)
• Speeds	up	stream	analytics	by	7x	
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Challenges

1. Hash	Grouping	performs	poorly	on	3D	memory

2. 3D	memory	is	capacity	limited

3. How	to	dynamically	map	streaming	data	to	hybrid	mem?
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Challenge	1:	Hash	Grouping	performs	poorly	on	3D	memory

• Operators:	computations	consume/produce	streams
• Pipeline:	a	graph	of	streaming	operators
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• Data	Grouping
• A	set	of	very	common	and	expensive	operators that	reorganize	records
• Hash with	random	access	in	existing	engines	à Performs	poorly	on	3D	memory…
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Challenge	2:	3D	memory	is	capacity	limited

• Streaming	data	

• High	data	volume	(100+	GB)

• 3D	Memory

• Capacity	limited	(~	16	GB)

• 3D	memory	is	NOT	large	enough	to	hold	all	streaming	data….
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Challenge	3:	managing	two	types	of	memory	
• How	to	dynamicallymap	data/operators	to	two	types	of	memory?	
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What	to	map? Where	to	map?

Unbounded	data

Various	queries	

Hybrid	memory:
benefit	&	limitation
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StreamBox-HBM	Solutions

1.	Hash	grouping	performs	poorly	on	3D	memory	

• à Solution	1:	Use	high	parallel	Sort	for	grouping

2.	3D	memory	is	capacity	limited	

• à Solution	2:	Only	use	3D	memory	to	store	in-memory	indexes

3.	How	to	manage	two	types	of	memory?

• à Solution	3:	Balance	two	limited	resource	with	a	single	knob
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Solution	1:	Parallel	Sort	for	Grouping

Known	duals	of	Grouping:	Hash	vs.	Sort
• DRAM:		Hash	is	the	best	[VLDB’09,	VLDB’13,	SIGMOD’15]
• Contribution:	3D	memory	reverses the	debate.	Sort outperforms	Hash.

Sort	is	worse than	Hash	on	algorithmic	complexity
• O(NlogN)	vs.	O(N)	

Yet,	Sort	outperforms Hash	after	we	exploit	all:
• Abundant	memory	bandwidth	
• High	task	parallelism
• Wide	SIMD	(avx512)

10
[VLDB’09]	Sort	vs.	hash	revisited:	Fast	join	implementation	on	modern	multi-core	cpus.		[VLDB’13]	Multi-core,	main-memory	joins:	Sort	vs.	hash	revisited
[SIGMOD’15]	Rethinking	simd vectorization	for	in-memory	databases
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Throughput Mem	bandwidth

Sort	outperforms	Hash	on	3D	memory
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Solution	2:	Only	use	3D	memory	for	in-memory	index	
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Streaming
data

Full	Records	<key,	key1,v1,	v2,	v3…>Index	<key,	pointer>

Cores

3D Memory DRAM

80	GB/s

96	GB
16	GB

375	GB/s

Minimize	the	use	of	precious	3D	mem’s	capacity	while	exploit	high	bandwidth
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Faster

More	efficient
K	Swapping



Solution	3:	balance	two	limited	resources
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Solution	3:	balance	two	limited	resources
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Solution	3:	balance	two	limited	resources
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Solution	3:	balance	two	limited	resources
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Solution	3:	balance	two	limited	resources
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Solution	3:	balance	two	limited	resources
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Solution	3:	balance	two	limited	resources
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Solution	3:	balance	two	limited	resources
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3D Memory DRAM

High	pressure	on	both…	à reach	hardware	limit	à limit	data	ingestion
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Other	optimizations

• Customized	memory	allocator
• Customized	task	scheduler	for	high	pipeline	and	data	parallelism
• High	parallel	merge-sort	kernels	using	avx-512	
• Dynamically	handle	key	changes
• Parallel	aggregation
• Co-design	RDMA	ingestion	with	memory	management	and	task	scheduling
• Task	parallelism	to	utilize	all	CPU	cores
• …
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StreamBox-HBM	Implementation
• Based	on	our	prior	work	StreamBox [USENIX	ATC’17]
• Implement	on	real	hardware	(Intel	KNL)	with	RDMA	network
• 61K	lines	of	C++11,	of	which	38K	lines	are	new
• Open	source:	http://xsel.rocks/p/streambox

26[USENIX	ATC’17]	StreamBox:	Modern	Stream	Processing	on	a	Multicore	Machine,	Hongyu	Miao,	Heejin Park,	Myeongjae	Jeon,	
Gennady	Pekhimenko,	Kathryn	S.	McKinley,	and	Felix	Xiaozhu Lin,	in	Proc.	USENIX	Annual	Technical	Conference,	2017.

Ninja	Developer	Platform	(KNL) Mellanox ConnectX-2

16GB	3D	memory
96GB	DRAM
64	cores	@1.3GHz

40Gb/s



Evaluation

• Comparing	to	widely	used	stream	analytics	engine
• Validating	our	key	system	designs
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StreamBox-HBM	is	10x	faster	than	Flink
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Poor performance	without any	key	designs
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In-mem-index performs	better	than	full-record
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3D	memory	boosts	performance
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SW better	manages	hybrid	memory	than	HW
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Performance	improve	with	all	system	designs
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The	first stream	engine	optimized	for	3D	Memory	+	DRAM on	real	hardware
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Balance	limited	resourcesMinimize	use	of	capacity

Hash	à Sort

Abundant	memory

High	parallelism

Wide	SIMD	(avx512)

Sequential	access

1.	Grouping	with	Sort 2.	In-memory	index	in	3D	Memory 3.	Mng hybrid	mem
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Exploit	high	bandwidth

StreamBox-HBM
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Lessons	on	exploiting	3D	memory	+	DRAM

Cheap	VM
(huge	page)

Apps

OS	kernel
RDMA	network

bypass	kernel,	free	CPU

High	task	
parallelism

Custom	mem	
allocator

Sequential	mem
access

Runtime Thread	pool	
+	custom	task	scheduler

Wide	SIMD	
(avx512)

Hybrid
Memory

Packed	data	
structure


