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Abstract—To run neural networks (NNs) on microcontroller
units (MCUs), memory size is the major constraint. While
algorithm-level techniques exist to reduce NN memory footprints,
the resultant losses in NN accuracy and generality disqualify
MCUs for many important use cases. To address the constraint,
we investigate out-of-core execution of NNs on MCUs: dynam-
ically swapping NN data tiles between an MCU’s small SRAM
and its large, low-cost external flash. Accordingly, we present
a scheduler design that automatically schedules compute tasks
and swapping IO tasks in order to minimize the IO overhead
in swapping. Out-of-core NNs on MCUs raise multiple concerns:
execution slowdown, storage wear out, energy consumption, and
data security. Our empirical study shows that none of these
concerns is a showstopper; the key benefit – MCUs being able
to run large NNs with full accuracy/generality – trumps the
overheads. Our findings suggest that MCUs can play a much
greater role in edge intelligence.

Index Terms—tinyML, Edge Computing, On-device Machine
Learning

I. INTRODUCTION

With low cost and energy, MCUs are becoming ubiquitous
platforms for neural networks (NNs), a paradigm dubbed
tinyML [1]. Running NN on MCU, rather than sending raw
data off, offers multiple advantages, notably tolerating poor
networks and preserving data privacy. Use cases include
detecting farming crop disease by classifying leaf photos [2]
and extracting traffic patterns by analyzing city images.

A top obstacle in tinyML is memory limit. On one hand, an
MCU has small memory, which comprises tens to hundreds
KB of SRAM as the main memory and byte-addressable flash
of no more than a few MBs for read-only data. Note that
the byte-addressable flash is different from external block-
addressable storage such as SD cards [3].

On the other hand, state-of-the-art NNs achieve high ac-
curacy and generality with large memory footprints [4], [5].
An NN’s memory footprint includes read-only parameters and
intermediate/final results called feature maps. Although MCU
can process one NN layer in memory before loading the next
layer, a layer’s parameters and feature maps can still take up
to 100 MB (e.g. VGG16 [6]). This exceeds the MCU memory
size by up to two orders of magnitude. Such a memory gap is
widening as recent NNs are becoming larger [7] while MCU
memory sees slow, if at all, scaling due to cost constraints [8].

A popular approach to overcoming memory limitation is to
engineer NNs themselves. Common techniques include model
compression [9]–[11], parameter quantization [12], designing
tiny NNs from scratch [13], as well as automation of these
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Fig. 1: Many popular NNs exceed the MCU memory size [16].

procedures [14]. In exchange, this approach gives away model
accuracy or generality at varying degrees. Unfortunately, in
order for an NN to fit into the MCU memory, the NN either
becomes substantially inaccurate (e.g. < 60% top-1 accuracy
as shown in Figure 1) or too specialized (e.g. can only detect
a few object classes [15]).

This disqualifies MCUs from the use cases where high
accuracy/generality are desired while delays can be tolerated,
for example: (1) NN inference on slowly changing signals,
e.g., monitoring crop health by analyzing hourly photos [2]
and traffic patterns by analyzing video frames every 20-30
minutes [15]. (2) profiling NNs on device: occasionally running
a full-blown NN to estimate the accuracy of long-running
smaller NNs [17]; (3) transfer learning: re-training NNs on
MCUs with data collected from deployment every hour or
day [18].

A case for out-of-core NNs Can an MCU execute NNs
that far exceed its physical memory size? A proven wisdom
is to dynamically swap tiles of NN layers between memory
tiers [19]. Specially, an MCU runtime can split one NN layer’s
working set into a series of tiles, each small enough to fit the
MCU memory; load tiles from external storage (a micro SD
card) to memory, compute on them, and write results back
to the storage for subsequent processing. While prior systems
have swapped NN tiles between a server’s CPU/GPU memo-



ries [20], applying the idea to MCU, in particular swapping
between small SRAM and a wimpy SD card, raises multiple
concerns: loss of SD card durability, execution slowdown due
to IO operations, energy increase, and safety/security of out-
of-core NN data. This paper aims to address these concerns.
Key observations This paper demonstrates the practicality
of out-of-core NN on MCUs, for which we have following
observations.

• Swapping overhead is only pronounced in certain NN
layers. Only on layers with low arithmetic intensity,
notably fully connected (FC) layers, the swapping delay
due to IO is longer than that of computation; on layers
with higher arithmetic intensity, e.g. convolution (Conv),
the swapping delay is dwarfed by that of computation.
The swapping overhead is further diminished by MCU’s
relative low CPU speed as compared to its IO speed.

• Swapping rate is throttled by computation, which limits
the wear rate of SD cards. As a common NN structure,
IO-bound layers such as FC are spaced by compute-
bound layers such as Conv. As a result, even with contin-
uous NN executions, IO is only exercised intermittently.

• Most IO traffic for swapping is read This is because
a layer’s parameters and input feature maps are often
much larger than its output feature maps. Fortunately,
read traffic does not wear SD cards.

• Hide swapping delays with parallelism at various gran-
ularities. Within a layer, the MCU can exploit tile par-
allelism, by computing on a tile while transferring others
to/from the storage. Between consecutive NN executions
such as on a sequence of video frames, the MCU can
further exploit pipeline parallelism, by overlapping the
swapping IO for an earlier frame with the computation
of a later frame.

• Modern MCU hardware often over-provision durability.
For example, a 64 GB SD card can last more than
10 years with 100 GB of daily writes (Section V-D).
As such, MCU can trades the surplus durability as a
system resource for accommodating large NNs. Modern
MCUs incorporate rich specialized hardware, e.g., for
DMA, hash, and crypto, which accelerates and secures
IO operations.

• IO adds marginal energy to an already busy MCU. With
an MCU already busy on computation, most of its hard-
ware components in high power states. Further activating
the SD card increases the system energy moderately.

Quantitative findings We present SwapNN, a scheduler
design that automatically schedules IO and compute tasks.
SwapNN exploits the IO/compute parallelism across tiles, lay-
ers, and data frames, meanwhile respects memory constraint
and data dependency. We applied SwapNN to a diverse set of
NNs, MobileNets [21], AlexNet [22], and VGG16 [6], on a
Cortex-M7 MCU with 340 KB of SRAM. Our findings are:

• Low to modest speed overhead. NNs with dominant
compute-bound layers see negligible swapping overhead,
both in per-frame delay and frame throughput. Compared

to running VGG on an ideal MCU with infinite main
memory (SRAM), out-of-core execution with 512 KB
memory sees only 6.9% longer per-frame delay and only
3% lower throughput. NNs with more IO-bound layers
such as AlexNet see notable delay increase (50%) while
insignificant loss in throughput (15.7%) thanks to tile and
pipeline parallelism.

• Large tiles are crucial to low swapping overhead. A
key parameter in out-of-core NN is the tile size, which
determines the granularity of IO/compute task. While
small tiles lead to fine-grained tasks and therefore better
compute/IO parallelism, they increase the total amount
of IO traffic and the per-byte IO delay. As we will show
experimentally, the cost of small tiles overshadows the
benefit of parallelism on typical MCU hardware and NNs,

• Low durability loss. Even with an MCU executing NNs
continuously, the write traffic due to swapping is no more
than a few hundred GBs per day, comparable to SD card
writes on a commodity surveillance camera. A 64 GB SD
card can sustain such a write rate for 7.5 years before half
of its cells are worn out.

• Modest increase in energy consumption. Our worst-
case estimation shows swapping increases system energy
by less than 42% compared to running NNs with infinite
memory (all in memory without swapping).

• Out-of-core data can be secured with known mecha-
nisms, such as encryption and hash-based integrity pro-
tection. Specialized hardware on MCUs further reduces
their overhead.

Contributions Our contributions are as follows.
• We present the first study of applying swapping to NN on

MCUs. We analyze the swapping-generated IO activities
and their implications on performance, storage durability,
energy, and data security.

• We explore software/hardware parameters that impact
swapping overhead. Towards lowering swapping over-
head, our findings shed light on setting software parame-
ters and designing MCU hardware (e.g., choosing SRAM
size).

• We present a scheduler design that can automatically
schedule IO and compute tasks in parallel. The scheduler
exploits a common NN characteristic that an NN often
has a mix of IO-bound and compute-bound layers. It
exploits IO/compute parallelism across NN layers and
across data frames while respecting memory constraint
and data dependency.

• We make a case that an MCU of less than ten dollars
with hundreds of KB SRAM can execute large NNs
such as VGG16, which expands the scope of tinyML
significantly.

II. BACKGROUND AND MOTIVATIONS

A. A taxonomy of NN layers

To study the swapping overhead, we focus on a layer’s
swapping delay relative to its computation delay on typical
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(a) AlexNet (input shape: 227)
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(b) VGG16 (input shape: 224)

 0

 0.2

 0.4

 0.6

co
n

v
1

d
w

-1
p

w
-1

d
w

-2
p

w
-2

d
w

-3
p

w
-3

d
w

-4
p

w
-4

d
w

-5
p

w
-5

d
w

-6
p

w
-6

d
w

-7
p

w
-7

d
w

-8
p

w
-8

d
w

-9
p

w
-9

d
w

-1
0

p
w

-1
0

d
w

-1
1

p
w

-1
1

d
w

-1
2

p
w

-1
2

d
w

-1
3

p
w

-1
3

p
re

d
sIO

/C
o
m

p
u

te
 t

im
e

 (
S

e
c.

)

Compute time IO time

(c) MobileNet (input shape: 224, alpha: 1)

Fig. 2: Per-layer compute and IO delays in NNs. (1) Observation: NNs have a mix of IO-bound and compute-bound layers.
(2) Insight: IO time can be hidden by compute time with parallel execution. (3) Configuration: MCU is ARM Cortex-M7 @
216 MHz, tile/buffer size is 128 KB, Transcend SD card size is 32 GB.

 

Layer 
Compute 

(MOps) 

IO traffic 

(MB) 
N on typical MCUs 

block1_conv2 1849.7 6.5 6.0 -- 179.0 

block1_pool 3.2 4.0 0.02 -- 0.5 

block3_conv3 1849.7 2.2 17.6 -- 526.6 

block4_pool 0.4 0.5 0.02 -- 0.5 

block5_conv1 462.4 2.6 3.8 --112.9 

fc1 102.8 102.8 0.02 -- 0.6 

fc2 16.8 16.8 0.02 -- 0.6 

TABLE I: Normalized arithmetic intensity (N) on NN layers
with MCU’s common speed range (64–480 MOPS [23], [24])
and IO bandwidth range (10–40 MB/s [25]). NN: VGG16

 

 MobileNets  AlexNet VGG16 ResNet18 GoogLeNet 

# of compute-bound layers  14 5 13 16 21 

# of IO-bound layers 13 3 2 2 6 

Size of feature maps (MB) 10 1 15 5 6.5 

Size of weights (MB) 4 62 138 11 13 

Memory footprint (MB) 14 63 153 16 19.5 

TABLE II: Number of IO-bound and compute-bound layers
and quantized memory footprints of popular NNs [26].

MCUs. The rationale is that as MCU can perform swapping
and computation in parallel, the longer of the two delays will
be the layer’s bottleneck.

Study setup Since the working set of a layer may not fit into
SRAM, we split a layer’s input, weight parameter, and output
into small tiles (e.g., 128KB). For compute time, we measure
the time to calculate every output tile, then calculate the layer’s
compute time by adding every output tile’s compute time. For
IO time, we measure the time to read input tiles, weight tiles
(once), and output tiles, and then calculate the layer’s IO time
by adding them together. Figure 2 shows the IO time and
compute time of each layer in three typical CNNs, where the
buffer size for tiles is 128 KB.

Classifying NN layers In general, arithmetic intensity, as
commonly used in HPC [27], characterizes a workload’s
compute/IO ratio. It is defined as W/Q, where Q is the
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Fig. 3: IO/compute delays in out-of-core NN execution. The
total execution delay is dominated by compute in the compute-
bound layers and IO in the IO-bound layers.

amount of data to move in the memory hierarchy and W is
the amount of arithmetic operations on the data. By factoring
in an MCU’s CPU speed (Scpu) and IO bandwidth (SIO),
we define N = (W/SCPU)/(Q/SIO) as the normalized
arithmetic intensity on MCU. Of a given layer, N > 1 means
swapping incurs less delay than computation, i.e, a compute-
bound layer; N < 1 means swapping incurs longer delay, i.e.
an IO-bound layer.

On modern MCUs with simple CPU cores, SCPU is prim-
iarly determined by the CPU clockrate; it ranges from 64
MOPS to 480 MOPS [23], [24]. SIO is jointly determined by
the MCU’s DMA bandwidth and the SD card bandwidth, rang-
ing from 10 MB/s to 40 MB/s as reported in literatures [25].
With these values, common NN layers fall into three distinct
categories per their normalized arithemetic intensity (N).
(1) A majority of compute-bound layers (N >> 1). Notable
examples are Conv layers known for their high complexity.
In the example of VGG16 (Table I), N for the Conv layers
far exceeds 1 even with a high CPU clockrate and slow IO.
They often dominate an NN’s execution time (51% – 90%),
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as exemplified by the three NNs in Figure 2. On these layers,
the computation delay overshadows the IO delay.
(2) Some IO-bound layers (N < 1). Examples include fully
connected (FC) and depth-wise convolutional layers (DW).
These layers perform light computation over large volumes of
feature maps and weight parameters. Of all layers in an NN,
they are often minorities (e.g. 2 out of 21 in VGG16). With
out-of-core execution, the IO delay exceeds the computation
delay by up to 10× (e.g. fc1 in Table I and Figure 2b).
(3) Other layers with insignificant overheads, e.g., Relu and
Maxpooling. These layers have low complexity and contribute
a tiny fraction of data to move and to compute (0.3%-0.9%)
for an NN. As such, their swapping overhead is insignificant.

Common pattern of NN layers Based on the NN layer
classification, there are two common patterns in typical CNNs:

(1) CNNs have a mix of compute-bound and IO-bound lay-
ers, and the number of compute-bound layers is usually larger
than other layers. Table II shows the number of compute-
bound and IO-bound layers in typical CNNs. For instance,
MobileNets [21], Alexnet [22], VGG16 [6], ResNet18 [28],
and GoogLeNet [4] have 14/13, 5/3, 13/2, 16/2, and 21/6 of
compute-bound/IO-bound layers respectively.

(2) The overall CNN execution time is dominated by the
compute time of compute-bound layers and the IO time of
IO-bound layers. Figure 3 shows the IO time and compute
of IO-bound/compute-bound layers. For instance, compute
time of compute-bound layers dominate the overall time in
Alexnet and VGG. For Mobilenet, the IO-time of IO-bound
layers dominates the overall time, because Mobilenet is using
specially point-wise and depth-wise convolutions [21], which
have lower compute complexity than general convolutional
layers.

Insights: Towards lowering the swapping overhead, we
exploit the aforementioned pattern of NN layers. By executing
compute-bound layers and IO-bound layers in parallel, we
hide the IO delays behind the compute delays.

B. The system model

MCU hardware We assume the following hardware compo-
nents: (1) a CPU with clockrate from tens of MHz to a few
hundred MHz, as exemplified by Arm Cortex M3 and M7; (2)
on-chip SRAM: from tens of KBs to several MBs; (3) on-chip
NOR flash: byte-addressable, read-only memory no more than
a few MBs; (4) cheap external storage, e.g. a micro SD card
ranging from tens of GBs to a few hundred GBs; (5) a DMA
engine, for moving data between SRAM and external storage
without CPU involved; (6) optionally, on-chip accelerators for
computing crypto and hash functions.

Major vendors ship numerous MCU models meeting the
above conditions. Examples include the STM32 MCU family
from STMicroelectronics [29] and the LCP series from NXP
Semiconductors [30]. They are priced at $1-$20 per unit.

NN workloads & metrics We motivate our study by
considering periodic NN inference on video/audio data as
a sequence of frames captured by MCUs at run time. To
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Fig. 4: An example of out-of-core NN execution, showing
Conv (compute-bound) and FC (IO-bound) layers.

characterize inference speed, we consider both the inference
delay of each frame and throughput as the number of frames
processed per second. MCU applications may be sensitive
to either metric or both. For instances, keyword spotting is
sensitive to inference delays [31] and car counting benefits
from high throughput [15].

Out-of-core NN executions We consider the following
swapping strategy. An NN’s parameters are pre-stored on the
external flash. Given an input frame, the MCU executes the
NN’s layers in sequence. It processes a layer in tiles, in case
the layer’s memory footprint exceeds MCU’s main memory:
to do so, the MCU loads to the main memory a tile of
parameters and a tile of input feature maps, computes a tile of
output feature maps in memory, and writes back the output to
the external flash. Altogether, the input and output tiles shall
simultaneously fit in the main memory.

As shown in Figure 4, MCU extracts CPU/IO parallelism
for hiding IO delays. (1) Tile parallelism within an NN layer:
while computing an output tile Tile0, MCU can pre-load from
flash the input tiles for computing the next output tile Tile1;
while writing back the completed Tile0 back to flash, MCU
can compute Tile1 simultaneously. (2) Layer parallelism: in
a similar fashion, MCU can execute an earlier layer’s com-
putation with a latter layer’s IO simultaneously. (3) Pipeline
parallelism across data frames: MCU can execute compute-
bound and IO-bound layers for different frames in parallel, as
these layers exercise complementary resources, namely CPU
and IO bandwidth. As shown in Figure 4, MCU swaps frame
0’s FC layer while computes on frame 1’s Conv layer.

III. SWAPNN: AUTOMATICALLY SCHEDULING
IO/COMPUTE TASKS IN PARALLEL

In order to reduce IO overhead in swapping, we present
SwapNN, a scheduler design that automatically schedules IO
tasks and compute tasks across tiles, layers and frames in
parallel based on NN characteristics, meanwhile respecting
memory constraint and data dependency.

A. Challenges

As shown in Figure 4, MCU ideally could extract CPU/IO
parallelism for hiding IO delays. However, such ideal parallel
scheduling sequence is difficult to find because it must meet
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the following requirements at the same time: (1) the scheduler
must automatically identify what tiles should be executed in
parallel according to their dependencies and relative IO/com-
pute time; (2) the working set of tiles being executed in parallel
must be smaller than SRAM at every single moment; (3)
the parallel sequence should keep both MCU core and IO
bandwidth fully utilized to avoid either of them from idling.

Furthermore, divers NN layers with different parameters and
diverse SRAM sizes on MCUs create a huge space of choices
for deciding parallel sequence for IO/compute tasks, which
makes parallel scheduling even more difficult.

B. SwapNN design

To address the above challenges, we present the design of
SwapNN, describing how to decide tile size, manage memory
buffers, and schedule IO/compute tasks in parallel, meanwhile
respect memory constraint, data dependency, and task priority.

Tiling NN layers and managing memory buffers A key
question in swapping is to decide tile sizes for NN layers
based on SRAM size. SwapNN splits SRAM size into fixed
number of buffers, and then calculates tile sizes based on
layer parameters and buffer size. Specifically, the input tile
size depends on the output tile size, so they will be decided
together and the larger one of them must be smaller than buffer
size. Weight tile size doesn’t depend on input or output, so it
is calculated just according to weight size and buffer size.

As show in Algorithm 1, SwapNN equally splits SRAM
into buffers with fixed size, and creates three separate memory
buffer pools for input feature maps, weight parameters, and
output feature maps, who have 1/4, 1/2, and 1/4 of total
memory buffers. The reason why SwapNN creates separate
memory pools, instead of one pool, is that single memory
pool for input/weight/output tiles leads to deadlock in parallel
execution. For example, all memory buffers may be allocated
to input and weight tiles, so execution cannot continue because
of no memory buffers for output tiles. The rational to choose
1/4, 1/2, and 1/4 is based on the minimal parallel working set
of computing one output tile, which includes one input tile, at
least two weight tiles, and one output tile.

NN task and graph As shown in Figure 5, SwapNN defines
two types of tasks: IO task and compute task. An IO task
reads/writes tiles from/to SD, and a compute task computes
an output tile based on corresponding input/weight tiles.

SwapNN defines an NN as a computation graph G = (V,
E), where V is the node set of IO and compute tasks, and
E is the edge set representing dependencies. For instance, a
compute task depends on IO tasks that read input/weight tiles,
and a write IO task depends on a compute task that finishes
computing output tile. Every task has a set of properties,
e.g., in-degree counter indicating the number predecessors of
current task, memory buffer and tile sizes, execution time, and
execution priority.

Two things that are worth noting in NN graph: (1) we
enforce dependencies between an input tile and multiple

weight tiles to ensuring reading input tile first, so that reading
other weight tiles can happen in parallel with computing an
output tile. (2) each output tile depends on all weight tiles, so
weight tiles may be read multiple times (once for each output
tile) during execution.

As show in Algorithm 1, BuildGraph() takes NN architec-
ture and SRAM size as parameters. For each layer, SwapNN:
(1) calculates tile sizes for input/weight/output based on mem-
ory buffer size; (2) creates read IO tasks for input and weight
tiles, compute tasks for computing output tiles, and write IO
tasks for output tiles; (3) inserts IO/compute tasks to execution
graph based on dependencies; (4) sets task properties, includ-
ing execution time, memory buffer size, inDegree counter, and
priority.
Task state As shown in Figure 5, SwapNN defines the
following states for every IO/compute task to manage their
lifecycle:

• INIT A task is set to INIT state when building the exe-
cution graph based on NN architecture, layer parameters,
SRAM size, buffer size, and dependency.

• READY A task becomes READY when all of its pre-
decessors have finished, at which point the in-degree
counter of the task drops to zero.

• SELECTED A task switches to SELECTECD from
READY when its memory buffers has been successfully
allocated, e.g., an input/weight buffer for a read IO task
or an output buffer for a compute task.

• FINISHED When a IO/compute task is finished, it
switches to FINISHED state, at which point SwapNN
decreases the in-degree counter by one for the task’s all
successors to release the dependency and free memory
buffers accordingly.

Task priority When there are multiple READY tasks from
multiple layers and frames, the tasks from earlier frames/layers
should have higher priority to be executed to guarantee per
frame delay. SwapNN assigns priority to tasks based on their
frame number and layer number when creating these tasks,
and schedules them at runtime according to the priority.
Scheduling NN tasks Given tiling strategies of NN layers,
SwapNN finds the optimal parallel sequences for IO and
compute tasks based on their dependencies, available memory
buffers, and priority. One goal of scheduling is to keep both
MCU and IO busy to avoid either of them from idling, to
achieve low latency and high throughput.

As show in Algorithm 1, SwapNN maintains two tasks
queues, ReadyIO and ReadyCP, for READY IO tasks and
READY compute tasks respectively. READY tasks in these
two queues are sorted based on their priority, and the one
with the highest priority will be scheduled each time.

ScheduleIOTask() keeps looking for IO tasks in ReadyIO
queue in priority order. For write IO tasks that do not require
memory allocation, SwapNN issues write DMA operation, and
then frees memory buffers and releases the dependencies for
the task’s successors. For read IO task, SwapNN first tries to
allocate memory buffer for it. If the allocation succeeds, then
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Fig. 5: Design overview of SwapNN: scheduling IO/compute tasks across tiles, layers, and frames in parallel according to
dependencies, priorities, and memory constraints.

issue read DMA operation and release the dependencies for
the task’s successors.

ScheduleComputeTask() keeps looking for compute tasks
in ReadyCP queue in priority order. It first tries to allocate
memory buffers to store computing output. If the allocation
succeeds, SwapNN executes the compute task, release the
dependencies for its successors, and free memory buffers of
input/weight tiles.

With two separate threads running ScheduleIOTask() and
ScheduleComputeTask(), SwapNN can schedule any ready
IO and compute tasks in parallel across tiles, NN layers,
and data frames, meanwhile respects memory constraint, data
dependency, and task priority. Therefor, the IO overhead in
swapping can be reduced.

IV. IMPLEMENTATION & METHODOLOGY

Implementation We implement swapping kernels for typical
NN layers to compute tiles on MCU atop CMSIS-NN li-
brary [32], and currently supported layers include Convolution,
ReLu, Pooling, Fully Connected, Depth-wise convolution, and
Point-wise convolution. We implement the scheduler in C++,
which can run on desktop to find the best parallel scheduling
sequence without deploying on MCUs.

Studied NNs We study three representative NNs, whose
memory footprints range from sveral-MB to hundred-MB
(with quantization). As shown in Table II: MobileNet has large
feature maps but small weight parameters, AlexNet has small
feature maps but large weight parameters, and VGG16 has
1000× larger memory footprint than MCUs’ SRAM size.

Input data We use synthetic images as the input. Note that
the input contents do not affect NN execution time/efficiency,
hence our measurement results.

Methodology In order to understand how swapping affects
the latency, throughput, SD durability, energy consumption,
and security, we do the following steps for all three NNs:
(1) Given SRAM size and buffer size, calculate the tile
sizes for all layers of an NN; (2) Based on tile sizes of
layers, we run the swapping kernels as microbenchmarks
on target MCU hardware (TM32F746NG-Discovery board:
ARM Cortex-M7 at 216 MHz, 340 KB SRAM, 32 GB SD
card), and then measure the IO/compute time for tiles; (3)
The scheduler takes NN architecture/parameters, SRAM size,
buffer/tile sizes, IO/compute time of tiles as parameters, and
then automatically finds out the optimal parallel scheduling
sequences for IO and compute tasks across layers and frames.

For latency, we measure the time to process one NN frame.
For throughput, we measure the time to process 10 consecutive
NN frames in parallel and then calculate the throughput. For
energy, we measure the worst-case energy consumption by
keep running IO and compute tasks simultaneously.

V. FINDINGS

This section focus on the analysis and findings of out-of-
core NN on MCUs by answering the following questions:

• What are the parameters and tradeoffs that affect swap-
ping performance?

• How does swapping affect per-frame latency?
• How does swapping affect throughput?
• Will swapping wear out SD soon?
• How much extra energy does swapping consume?
• Does swapping incur security issues?

A. Software/hardware parameters and their tradeoffs

There are multiple hardware/software parameters that affect
the swapping performance, including SRAM size, buffer/tile
size, the number of buffers, NN’s memory footprint, and the
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(c) VGG, SRAM 4MB
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(d) VGG, SRAM 8MB
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(e) AlexNet, SRAM 512KB
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(f) AlexNet, SRAM 1MB
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(h) AlexNet, SRAM 8MB
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(i) Mobilenet, SRAM 512KB
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Fig. 6: Swapping delays during NN executions, with different sizes of SRAM and buffers. Observation: swapping incurs
negligible or modest delays.

7



 0

 20000

 40000

 60000

 80000

16 32 64 128

N
u
m

b
e
r 

o
f 

ta
sk

s

Buffer/tile size (KB)

Num. of Compute tasks
Num. of IO tasks

(a) VGG

 0

 20000

 40000

 60000

16 32 64 128

N
u
m

b
e
r 

o
f 

ta
sk

s

Buffer/tile size (KB)

Num. of Compute tasks
Num. of IO tasks

(b) AlexNet

 0

 1000

 2000

 3000

16 32 64 128

N
u
m

b
e
r 

o
f 

ta
sk

s

Buffer/tile size (KB)

Num. of Compute tasks
Num. of IO tasks

(c) Mobilenet

Fig. 7: Number of IO/compute tasks in NNs with different buffer/tile sizes. Observation: the number of IO/compute tasks drops
significantly as the buffer/tile size increases.

ratio of compute-bound and IO-bound layers in NNs. We
analyze each of them as following:

• SRAM size: Large SRAM leads to large memory buffers
or more memory buffers, but also increases cost and
energy consumption.

• Buffer/tile size: Tile is a small chunk of input/weight/out-
put, and it decides the granularity of IO/compute task.
Small tiles lead to fine-grained tasks and therefore bet-
ter compute/IO parallelism, but they increase the total
amount of IO traffic/time. Buffers are used to store tiles,
and tile size is calculated based on buffer size. We treat
them the same in discussion.

• The number of memory buffers: The more, the better.
More memory buffers allows more tiles co-existing in
SRAM, so more tasks can be executed in parallel.

• NN’s memory footprint: It’s decided by NN architecture.
NNs with larger memory footprint see higher IO overhead
in swapping due to more IO traffic, and vice versa.

• The ratio of compute-bound and IO-bound layers in
NNs. It’d decided by NN architecture and affects the IO
overhead in swapping. NNs with more compute-bound
layers, the IO overhead is lower since IO time can be
hidden by relatively longer compute time. In contrast,
NNs with more IO-bound layers, the IO overhead is
higher since the relatively longer IO time cannot be
hidden by compute time.

Tradeoffs in buffer/tile size, the number of buffers, IO
traffic/time, and parallelism Given SRAM size, the buffer-
/tile size and the number of buffers can be decided, and
their tradeoffs effects overall IO traffic/time and parallelism
in swapping.

• Large buffer/tile size leads to low IO traffic/time, but
limits execution parallelism: Given an NN and SRAM
size, large buffer/tile size leads to small number of tiles,
and hence low IO traffic. The overall IO time is short due
to less IO traffic, but the execution parallelism is low due
to small number of buffers.

• Small buffer/tile size leads to high execution parallelism,
but increases overall IO traffic/time: Given an NN and
SRAM size, small buffer/tile leads to large number of

tiles, and hence high IO traffic. The overall IO time is
long due to high IO traffic and more fin-grained IO tasks,
but the execution parallelism is high due to large number
of memory buffers, which allow more tiles to co-exist in
memory and be processed in parallel.

Experimental insights We study how these parameters affect
swapping performance on MCU with experiments, and we
have the following findings:

• Increasing buffer/tile size can significantly reduce the
number of IO tasks and overall IO time.
The number of IO tasks drops as buffer/tile size increases.
Figure 7 shows the number of IO/compute tasks of NNs
under different buffer sizes. For instance, when buffer/tile
size increases from 16 KB to 128 KB, the number of
IO tasks (Grey bars in Figure 7) of VGG, AlexNet, and
MobileNet drops from 85024 to 2248, from 68040 to
5390, and from 3190 to 870 separately.
Overall IO time drops as buffer/tile size increases. As the
IO time (gray bar) shown in Figure 6a, Figure 6e, and
Figure 6i, where SRAM size is 512 KB. When buffer/tile
size increases from 16 KB to 128 KB, the overall IO time
of VGG, AlexNet, and MobileNet drops from 257.824s to
52.4849s, from 27.4765s to 13.6731s, and from 167.183s
to 10.6669s separately. The same pattern can also be
observed when using larger SRAM sizes in Figure 6.

• Parallel execution can reduce IO overhead, especially
when there are larger numbers of buffers.
When there are more memory buffers, more IO/compute
tasks can be executed in parallel, and hence more IO
time can be hidden by compute time. For instance, the
white and yellow bars in Figure 6a show the sequential
execution time and parallel execution time under different
buffer sizes (different number of buffers). When buffer-
/tile size increases from 16 KB to 128 KB, the number
of buffers drops from 32 to 4, and IO time reduced by
parallel execution drops from 251s to 10s (compared
to sequential execution). The same pattern can also be
observed in other NNs in Figure 6.

• Given SRAM size, comparing to small buffer/tile size
with high parallelism, large buffer/tile size with low
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Algorithm 1: Scheduling IO/compute tasks in parallel
Input : NN architecture and SRAM size
Layers[L] = parameters of L layers in an NN
ReadyIO = a set of READY IO tasks sorted by priority
ReadyCP = a set of READY Compute tasks sorted by priority
Function BuildGraph(Layers, SRAMSize):

G = empty graph
for Layer ∈ Layers do

Calculate tile sizes for input, weight, and output;
for all input tiles do

Insert an IO task for reading input tile to G;
for all weight tiles do

Insert an IO task for reading weight tile to G;
Insert a Compute task to G;

Insert an IO task for writing output tile to G;

Set the root IO Task to READY and insert into ReadyIO;
return G;

Function ScheduleIOTask(G):
while readyIO is NOT empty() do

for iotask in ReadyIO do // in priority
order

if iotask is WRITE then
Execute the write iotask;
ReleaseSuccessors(G, iotask);
freeMemoy(iotask.buffptr);

else // iotask is READ
buffptr = AllocateMemory();
if buffptr != NULL then

Execute the READ IO task;
ReleaseSuccessors(G, iotask);

Function ScheduleComputeTask(G):
while readyCP is NOT empty() do

for cptask in ReadyCP do // in priority
order

buffptr = AllocateMemory(); // for output tile
if buffptr != NULL then

Execute the Compute task;
ReleaseSuccessors(G, cptask);
freeMemory(); // for input and weight tiles

Function ReleaseSuccessors(G, task):
for suctask in task’s successors do

if suctask.inDegree - - == 0 then
insert suctask to ReadyIO or ReadyCP;

freeListIn, freeListWt, freeListOut = lists of free memory
buffers for input, weight, and output tiles

Function AllocateMemory(freeList):
if freeList is empty then

return NULL;
buffptr = select one buffer from freeList;
return buffptr;

Function FreeMemory(buffptr, freeList):
insert buffptr to freeList;

parallelism incurs much lower IO overhead in swapping.
Both large buffer/tile size (small number of buffers) and
high parallelism can reduce IO overhead, but they are
in conflict and cannot be achieved at the same time. We
observe that the former one can reduce more IO time then
the later one.
MobileNet is IO-intensive NN, parallel execution cannot
reduce IO overhead much even with more buffers (smaller
buffer/tile size, e.g, 16 KB). However, increasing buffer
size can reduce IO time from 167s to 16s when buffer size
increases from 16KB to 128KB, as shown in Figure 6i.
The same pattern also can be observed in AlexNet and
VGG, but benefit of choosing large buffer/tile size is not
as significant as MobileNet because they are less IO-
intensive. For these two NNs, parallel execution plays
a bigger role to hide IO time when buffer size is small,
while low overall IO tasks/time plays a bigger role when
buffer size is large. Overall, large buffer/tile size still
overshadows the benefit of parallelism.

B. Impact on per-frame delays

Implication: With large buffer/tile size, NNs with a small
fraction of IO-bound layers see negligible delay increase; NNs
with more IO-bound layers see modest delay increase.

Within a compute-bound layer, MCU can execute IO and
computation for consecutive tiles simultaneously (as these tiles
are independent), completely hiding the IO delay behind the
much longer computation delay. Within an IO-bound layer, IO
and compute for consecutive tiles can happen simultaneously
as well, but the long IO delay cannot be totally hidden
by relatively shorter compute delay. For other layers, e.g.
relu/pooling, the IO/compute delay is insignificant.

As such, the increased delay of an NN due to swapping
is mainly determined by the proportion of IO-bound layers’
IO delay to all layers’ total compute delay. The increased
delay for NNs with less IO-bound layers is negligible. As
VGG shown in Table II, only 2 out of 13 layers are IO-
bound, leading to only about 6.9% increased delay as shown in
Figure 6a – Figure 6d (Yellow vs. Black bars). The increased
delay for NNs with more IO-bound layers is modest. As
AlexNet and MobileNet show in Table II, 3 of 5 and 13 of
28 layers are IO-bound, leading to 50% and 150% increased
delay when buffer/tile size is as large as 128 KB, as shown in
Figure 6e – Figure 6l (Yellow vs. Black bars). Overall, the
increased delay due to swapping is negligible for compute-
intensive NNs and modest for IO-intensive NNs.
Implication: Insight for hardware designer: increasing SRAM
size only increases cost, but cannot improve the latency much
in swapping.

As shown in Figure 6, the latency of VGG, AlexNet, and
MobileNet does not decrease much as the SRAM size in-
creases. For given buffer size, using larger SRAM can increase
the number of buffers, and hence can increase parallelism.
However increasing SRAM size and the number of buffers
cannot help much, because the gap between the number of
tasks and the number of buffer is too large (100× gap).
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For instance, the number of IO tasks in MobileNet is 55877
(Figure 7c) when buffer size is 16 KB, but the number of
buffers only increases from 32 to 512 (100× smaller than
55877) when SRAM size increase from 512KB to 8MB.

C. Impact on NN throughput

Implication: With large buffer/tile size, NNs see negligible
or modest throughput loss.

NNs with negligible delay increase will also see negligible
throughput loss when processing a stream of frames, since
the IO time can be hidden by the relatively longer compute
time. For instance, the throughput loss is only 3% for VGG
as shown in Figure 8d, where buffer/tile size is 128 KB and
SRAM size is 8 MB.

For those NNs seeing higher delay increase, the throughput
loss is relatively higher, since the longer IO time cannot
hidden by the relatively shorter compute time. Although MCU
can reduce throughput loss by exploiting parallelism, but not
much due to the limited number of buffers. For instance, the
throughput loss for AlexNet and MobileNet is 15.7% and
46.4% as shown in Figure 8h and Figure 8l where buffer size
is 128 KB and SRAM size is 8 MB.

Implication: Cross-frame (pipeline) parallelism cannot im-
prove throughput much due to the limited number of buffers,
even if increasing SRAM size.

A common pattern in an NN is that one or more compute-
bound layers followed by one or more IO-bound layers, i.e. a
pipeline with interleaved compute-bound and IO-bound stages.
For instance, the AlexNet in Figure 2a, conv1-5 ( compute-
bound stage) is followed by fc6-8 (IO-bound stage). When
executing NN on a sequence of frames, MCU can overlap
IO/compute-bound stages of adjacent frames, hence hiding the
IO delays that cannot be hidden at the layer/tile levels with
each frame. As shown in Figure 9, MCU can swap for frame
0s FC layers while computing Frame 1s Conv layers, leading
high MCU/IO utilization and throughput.

However, such parallelism that overlaps IO/compute-bound
stages in adjacent frames cannot be fully exploited on MCUs
with tiny SRAM due to the limited number of memory buffers.
As Figure 8 shown, the throughput of VGG, AlexNet, and
Mobilenet does not increase much as the SRAM size becomes
larger. Because of the same reason as in latency above, the
gap between the number of tasks and the number of buffers
is too large (1000×). For instance, the number of IO tasks
in MobileNet is 558770 (10 frames, 55877 IO tasks in each
frame shown in Figure 7c) when buffer size is 16 KB, but
the number of buffers only increase from 32 to 512 (1000×
smaller than 558770) when SRAM size increases from 512 KB
to 8 MB. The small number of buffers have been consumed by
one frame, so other frames cannot get buffers to be executed
in parallel.

Implication: Increasing buffer/tile size leads to higher
throughput than increasing parallelism.

Same as the tradeoff in latency, given SRAM size: if the
buffer/tile size is large (the number of buffer is small), the

overall IO time is shot but parallelism is low; if the buffer/tile
size is small (the number of buffer is large), the overall IO time
is long but the parallelism is high. Overall, large buffer/tile
size leads to higher throughput than small buffer/tile with
high parallelism, especially for NNs that have more IO-bound
layers. For instance, MobileNet has more IO-bound layers,
and its throughput increase 20× when buffer size increases
from 16 KB to 512 KB (although parallelism drops due to
less buffers) as shown in Figure 8l. While VGG and AlexNet
have relatively less IO-bound layers, and their throughput does
not change much when increasing buffer size, as shown in
Figure 8d and Figure 8h. The reason is that parallelism is
high when buffer/tile size is small, and overall IO time is
short when buffer size is large.

D. Impact on flash durability

Implication: SD card sees negligible durability loss, and its
lifetime could be years or tens of years with swapping.

The amount of data written to SD card per frame is not large
because NN layers are read-most, and the write frequency is
low due to the long execution time on slow MCU.

Modest write rate For a given NN and SRAM size, the
amount of data written to SD card is determined by the frame
rate (reciprocal of delay per frame) and the amount of data
to write per frame (upper bound is the sum of output feature
maps of all layers), which have negative correlations: (1) for
large NNs, frame rate is low but the amount of data to write
per frame is large; (2) for small NNs, frame rate is high but
the amount of data to write per frame is small. Therefore,
no matter an NN is large or small, the data written per day
won’t be large. For instance, swapping writes only 2.0/2.8
GB for VGG16/AlexNet per day. Even for the extreme case,
MobileNet, which has high frame rate and relatively large
feature maps to write, swapping writes 123 GB per day.

SD card has long lifetime even with swapping SD card is
build up of many cells, which have limited write cycles [33].
As the capacity is becoming larger [34], the durability budget
is keeping increasing. The study [35] keeps writing 24/7 as
fast as possible to 40 4 GB SD cards, and 1, 20, and 40 of
40 cards observe the first failures after writing 6.5 TB, 9 TB,
and 12.5 TB of data to them. Based on their results, the first
cell is only expected to fail on a 64 GB SD card after running
MobileNet, AlexNet, and VGG16 for 2.4 – 4.5, 104 – 200,
and 145 – 280 years, and 50% of cells fail (10K cycles per
cell [36], [37]) only after running for 7.5, 328, and 460 years.

E. Impact on system energy

Implication: Swapping adds modest energy consumption to
an already busy MCU.

We estimate the worst-case energy overhead due to swap-
ping. Our test platform is an STM32F746NG-Discovery board
(ARM Cortex-M7 at 216 MHz; 340 KB SRAM) with an
external power meter [38]. We run two benchmarks. (1) in-core
emulates NN executions with an infinite amount of memory:
it runs NN compute [32] for 1000 iterations. (2) out-of-core
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(a) VGG, SRAM 512KB
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(b) VGG, SRAM 1MB
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(c) VGG, SRAM 4MB
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(d) VGG, SRAM 8MB
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(e) AlexNet, SRAM 512KB
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(f) AlexNet, SRAM 1MB
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(g) AlexNet, SRAM 4MB
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(h) AlexNet, SRAM 8MB
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(i) Mobilenet, SRAM 512KB
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(j) Mobilenet, SRAM 1MB
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(k) Mobilenet, SRAM 4MB
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(l) Mobilenet, SRAM 8MB

Fig. 8: NN inference throughput with swapping under different SRAM sizes and buffer/tile sizes.

emulates NN executions with the most intensive IO traffic
in parallel to the compute: it executes the same amount of
compute with an IO thread repeatedly flushing data blocks to
SD card Each data block is 100 KB (close to tile size); the
flush is asynchronous using the MCU’s DMA engine. Note
that the IO traffic in real applications is less intensive (which
will not keep writing all the time) than our benchmarks, so
the energy we measure is the worst-case energy consumption
that is higher than real cases.

Our measurement shows that: the additional IO workloads
increases the system energy by 42%, from 0.07 Wh (in-core)
to 0.10 Wh (out-of-core); the total execution time goes from
178 sec to 213 sec. Our obsevations are: (1) The actual
energy overhead in out-of-core NNs is likely much less: while
the out-of-core benchmark keeps IO always busy, the actual
out-of-core NNs exercise IO intermittently (§II-A) because
most NN layers are likely compute-bound. (2) We attribtute
the modest energy overhead to the incremental nature of
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Compute:

IO:

Time:
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Tile parallelism in each layer + Pipeline parallelism across frames
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AlexNet:

Fig. 9: An example timeline of NN execution, showing that tile
parallelism is exploited for low delay and pipeline parallelism
is exploited for high throughput.

system energy: when an MCU-based device is already busy
executing compute, its most power-hungry hardware – cores,
interconnect, SRAM, and regulators – is already activated;
executing IO, which activiates an SD card and the MMC
controller in addition, adds to the energy but not much.

F. Out-of-core data security and safety

Compared to storing NN data in on-chip SRAM, (tem-
porarily) storing it off-chip is more vulnerable to physical
attacks [39]: adversaries may learn or corrupt the data by
tapping into the IO bus between MCU and the SD card, or
the SD card itself. Fortunately, by encrypting NN data before
swapping out, MCU can ensure the data to be confidential and
integral; the overhead is linear to the data amount. Hardware
crypto, such as for ASE [40], [41], is already common on
modern MCUs. Its computation overhead is comparable to
(or even less than) the least intensive NN compute (e.g. FC
layers).

Compared to SRAM, SD cards are less durable. Yet, it is
known that a SD card rarely fails as a whole but seeing a
gradual increase number of corrupted cells over time [42]. Cell
corruption is often silent, i.e. a read value simply differs from
what was written last time. Fortunately, MCU can detects such
failures with hash-based integrity checking. With specialized
hardware on MCUs, computing hash is no more expensive
than the least intensive NN compute [40]. Upon detection of
bad cells, the MCU can recompute the most recent NN layer
and recover the corrupted out-of-core data.

VI. RELATED WORK

Implications on model compression Existing work on
tinyML tries to run NNs on MCUs by reducing memory
footprint, such as model compression [9]–[11], parameter
quantization [12], designing tiny NNs from scratch [13], as
well as automation of these procedures [14]. However, they
give away model accuracy or generality at varying degrees.
In order for an NN to fit into the MCU memory, the NN
either becomes substantially inaccurate or too specialized. In
contrast, our swapping solution doesn’t incur accuracy and
generality loss. Our solution boosts design freedom in tinyML,
where memory limit was considered as the primary motivation

for model compression. With the removal of such a limit,
developers now have the choice of run large NNs without
compression, retaining full model accuracy. Even in case of
model compression is warranted, e.g. for faster NN execution,
developers now have a wider selection of baseline NNs,
including the ones with orders of higher memory footprints
than MCUs.
Relation to prior swapping systems Prior work enables
out-of-core NN training with large batches on GPU/CPU
memory systems [20], [43]–[46], but they cannot address the
unique challenge on MCU that even a single layer exceeds
main memory during NN inference. Prior work, e.g., Scratch-
Pad [47] , proposes generic technique to swap data between
SRAM and DRAM (not SD) for embedded devices. However,
they don’t leverage NN characteristics to optimize swapping,
and they don’t answer how swapping affects SD card lifetime,
execution slowdown, energy consumption, and data security
for NN applications. This paper presents the first study on
these questions and shows that swapping is feasible without
much overhead.
Complement to existing inference framework Tensorflow
Lite Micro [48] is a framework for running NN inference
on embedded devices. CMSIS-NN [32] provides optimized
NN kernels for ARM Cortex-M MCUs. SONIC [49] supports
intermittent computing for NN inference on MUCs. TVM [50]
can generate optimized code for NNs on MCUs. However,
none of them supports NNs whose memory footprints are
larger than physical memory on MCUs. Our out-of-core solu-
tion is a complement to existing frameworks. It can be used
in conjunction with them and expand their design space.

VII. CONCLUSIONS

This paper advocates enabling large NNs on tiny MCUs
without losing accuracy by swapping data to SD card. With
the parallel scheduler that overlaps IO and compute tasks to
hide IO overhead, our study shows that none of SD card
durability loss, execution slowdown, energy consumption, or
data security is an issue. We find that an MCU with hundreds
of KBs SRAM can execute NNs with a few hundreds MBs
of memory footprint (a 1000× gap). Out-of-core execution
expands the scope of NN applications on MCUs.
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